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Bacterial division initiates at the site of a contractile Z-ring com-
posed of polymerized FtsZ. The location of the Z-ring in the cell
is controlled by a system of three mutually antagonistic proteins,
MinC, MinD, and MinE. Plastid division is also known to be
dependent on homologs of these proteins, derived from the
ancestral cyanobacterial endosymbiont that gave rise to plastids.
In contrast, the mitochondria of model systems such as Saccharo-
myces cerevisiae, mammals, and Arabidopsis thaliana seem to
have replaced the ancestral α-proteobacterial Min-based division
machinery with host-derived dynamin-related proteins that form
outer contractile rings. Here, we show that the mitochondrial di-
vision system of these model organisms is the exception, rather
than the rule, for eukaryotes. We describe endosymbiont-derived,
bacterial-like division systems comprising FtsZ and Min proteins in
diverse less-studied eukaryote protistan lineages, including jako-
bid and heterolobosean excavates, a malawimonad, strameno-
piles, amoebozoans, a breviate, and an apusomonad. For two of
these taxa, the amoebozoan Dictyostelium purpureum and the
jakobid Andalucia incarcerata, we confirm a mitochondrial locali-
zation of these proteins by their heterologous expression in Sac-
charomyces cerevisiae. The discovery of a proteobacterial-like
division system in mitochondria of diverse eukaryotic lineages
suggests that it was the ancestral feature of all eukaryotic mito-
chondria and has been supplanted by a host-derived system mul-
tiple times in distinct eukaryote lineages.

mitochondria | mitochondrial division | Min proteins | MinCDE |
mitochondrial fission

During bacterial division, septum formation is mediated by
the Z-ring, a contractile ring structure made up of the po-

lymerized tubulin homolog FtsZ (reviewed in refs. 1 and 2). The
site at which FtsZ polymerizes is determined by the Min system
(reviewed in refs. 1 and 3–5), comprising the three septum site-
determining proteins MinC, MinD, and MinE. ATP-bound,
dimerized MinD binds the inner cell membrane at the poles of
the cell, forming aggregates. These MinD aggregates bind and
activate dimerized MinC (6), which then inhibits local FtsZ po-
lymerization (Fig. 1A). Concomitantly, dimerized MinE forms
a spiral ring whose constant polymerization and depolymerization
causes it to oscillate across the cell (7, 8). Where MinE comes
into contact with MinD, it causes the release of ATP and the
subsequent liberation of MinD from the membrane (9, 10). In
this way, MinD and MinC cannot inhibit FtsZ polymerization
near the midpoint of the cell. The polymerizing Z-ring is stabi-
lized and tethered to the membrane by FtsA, ZipA, and the
nonessential ZapA and (in some organisms) ZapB (11–15).
Maturation of the Z-ring into a complete septal ring continues
with the subsequent recruitment by FtsA of further components
of the divisome (i.e., FtsB, FtsE, FtsI/PBP3, FtsK, FtsL, FtsN,
FtsQ, FtsW, and FtsX), which proceed to stabilize FtsZ and

contribute to peptidoglycan synthesis (reviewed in refs. 3, 4, 16
and 17) (Fig. 1B) before Z-ring constriction and the completion
of septum formation (Fig. 1C).
Plastids are known to possess FtsZ (18–20), MinD (21, 22),

MinE (21, 23), and, in some cases, MinC (24) homologs of
cyanobacterial endosymbiotic origin; in some cases, the latter are
encoded on the plastid genome (21, 25). In contrast, only two
examples of putative mitochondrial Min proteins have been
reported, in the stramenopiles Nannochloropsis oceanica and
Ectocarpus siliculosus (26). Indeed, although eukaryotic mito-
chondria are derived from an α-proteobacterial endosymbiont,
the ancestral bacterial division machinery has been partly or
wholly replaced by eukaryote-specific proteins in model system
eukaryotes where mitochondrial division has been studied.
Whereas Amoebozoa (27), stramenopiles (28, 29), and the red
alga Cyanidioschyzon merolae (30, 31) have retained experi-
mentally confirmed mitochondrial FtsZ, animals and fungi
(opisthokonts) and plants examined to date lack this protein. In
the latter taxa, an outer contractile ring is instead formed by
Dnm1p/Drp1, a eukaryote-specific dynamin GTPase (32–34).
This protein is implicated in mitochondrial division in organisms
across the eukaryotic tree, including Arabidopsis thaliana (35–
37), the parabasalid Trichomonas vaginalis (38), Dictyostelium
discoideum (39), and C. merolae (40), suggesting that the outer
contractile ring is a widespread eukaryotic feature. In T. vaginalis
and A. thaliana, the nature of the inner contractile ring is not yet
understood, although the presence of two Dnm1/Drp1 homologs
in A. thaliana (37) raises the possibility that they form an outer and
an inner contractile ring, respectively. Recent work (41) recon-
structing the evolution of eukaryotic dynamins suggests that the
ancestral mitochondrial dynamin was a bifunctional protein that
also mediated vesicle scission. This protein underwent duplica-
tion events, followed by subfunctionalization, independently in at
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Fig. 1. Partial schematic overview of division machinery in E. coli. (A) Roles of Min proteins during FtsZ polymerization. (B) Subsequent recruitment of early
and late stage proteins involved in Z-ring stabilization and attachment to the cell membrane. (C) Overview of septation initiation at the cell level. Dark-blue
rectangles, FtsZ; dark-green circles, MinD; light-blue shapes, late-stage cell-division proteins; light-green circles, MinC; magenta circles, MinE; red shapes, early-
stage cell-division proteins. For the sake of clarity, not all proteins known to localize to the mid-cell during division are shown. In particular, this schematic
focuses on proteins known to localize to the cytoplasmic membrane and excludes most proteins localizing primarily to the peptidoglycan layer and the outer
membrane. Based on reviews in refs. 1, 16, and 17.
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Fig. 2. Presence and absence of bacterial Min proteins and FtsZ in selected eukaryotic taxa. Blue, predicted mitochondrial proteins; gray, no protein found
encoded in complete genome data; green, predicted plastid proteins; ?, no protein found encoded in transcriptome or incomplete genome data; *, chro-
matophore protein; †, predicted pseudogene; ‡, with the exception of Physcomitrella patens. Boxes shaded half blue and half green represent multiple
paralogs, predicted to be mitochondrial and plastid, respectively. In cases where only a transcriptome or incomplete genome is available, it should be noted
that the presence of a plastid protein does not exclude the possibility of one or more mitochondrial paralogs also being present, and vice versa. Eukaryotic
taxa possessing predicted mitochondrial Min proteins are shaded in blue. Mitochondrial or plastid predictions are based on phylogenetic affinity with
previously localized proteins, predicted subcellular localization, and localization in yeast (A. incarcerata, D. discoideum). Black circles indicate taxa in which
reticulate mitochondria have previously been described; gray circles indicate groups for which reticulate mitochondria have been described in at least one
member; black-bordered white circles indicate taxa in which only single or unbranched mitochondria have been described. The schematic phylogeny reflects
the current understanding of relationships based on multiple phylogenomic analyses. For a more complete table, see Table S1.
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least three lineages (opisthokonts, land plants, and alveolates), but
the ancestral bifunctional form seems to have been retained in
amoebozoa such as D. discoideum, the red alga C. merolae, and
stramenopiles (and possibly additional eukaryotes that have cur-
rently less well-characterized dynamins). The distribution of an-
cestral-like bifunctional mitochondrial/vesicle fission dynamins
thus seems to mirror that of mitochondrial FtsZ (41).
Here, we hypothesize that the complete loss of the α-proteo-

bacterial division system is the exception, rather than the rule,
for eukaryotes. We show that mitochondria-targeted homologs
of bacterial Min proteins are patchily but widely distributed
among diverse eukaryote lineages; and we further demonstrate
that Min proteins from two of these lineages, the amoebozoan
Dictyostelium purpureum and the jakobid excavate Andalucia
incarcerata, localize to mitochondria when expressed in yeast.

Materials and Methods
Database Searches. Publicly available databases and sequencing projects
were searched using the Basic Local Alignment Search Tools (BLAST) blastp and
tblastn (42). A large number of databases containing eukaryotic sequences
were screened with these tools using query sequences from D. purpureum
(XP_003286111, XP_003292258, XP_003293637, XP_642499), E. siliculosus
(CBJ32744, CBJ31561, CBJ28079, CBJ48312) A. incarcerata, Pseudomonas flu-
orescens (AEV64338, AEV64339, AEV64340, AEV64767), and Anabaena sp. 90
(YP_006998153, AFW94434, YP_006996248, YP_006996249). The databases
searched included the Nucleotide collection (nr/nt), National Center for Bio-
technology Information (NCBI) Genomes, Whole-Genome Shotgun contigs,
Expressed Sequence Tags, High-throughput Genomic Sequences and Tran-
scriptome Shotgun Assembly divisions of GenBank (43) (last accessed February
9, 2015); the Broad Institute project databases (44) (accessed April 23, 2014);
the Joint Genome Institute (JGI) genome databases (45, 46) (last accessed
February 9, 2015); dictyBase, 2013 release (47–49); the EnsemblProtists data-
base (50) (last accessed February 9, 2015); the Eukaryotic Pathogen Database
Resources (EuPathDB) (51) (last accessed February 9, 2015); and the Marine
Microbial Eukaryote Transcriptome Sequencing Project (52) (accessed June 3,
2014), via the Community cyberinfrastructure for Advanced Microbial Ecology
Research and Analysis (CAMERA) portal (53) (for a full list of sequences
identified, see Table S1 and Dataset S1). In addition, we searched our own
unpublished genome or transcriptome assemblies from several protist taxa of
key evolutionary interest: two jakobids (A. incarcerata and Andalucia godoyi),
the heterolobosean Pharyngomonas kirbyi, and Malawimonas californiana.
Potential homologs identified were screened manually to exclude con-
taminants from bacterial or other eukaryotic sources, by searching for
introns and excluding sequences with a notably high degree of similarity to
bacterial or distantly related eukaryotic homologs. Subcellular localization
and targeting peptides were predicted using TargetP, using “plant”

parameters for plastid-bearing taxa and “nonplant” parameters for taxa
lacking plastids (54, 55).

Sequence Generation. P. kirbyi strain AS12B (56, 57) was cultivated at 37 °C in
10% (wt/vol) salt medium (NaCl 1.6 M, KCl 34.0 mM, MgCl2 44.2 mM, CaCl2
4.0 mM, MgSO4 4.5 mM) supplemented with Citrobacter sp. as a food source
before RNA isolation. RNA was extracted using TRIzol (Life Technologies) fol-
lowing the manufacturer’s instructions and stored at −80 °C. The RNA sample
was treated with Turbo DNase (Life Technologies) before conversion to cDNA
using the GeneRacer kit with SuperScript III reverse transcriptase (Life Technol-
ogies) and stored at −20 °C. Primers were designed to amplify genes of interest
using available sequences. Primer sequences were as follows: MinCF, 5′-ATGT-
CACGTCGATGGTTAGT-3′; MinCR, 5′-TAATACAAAAAAAAAACA-3′; MinDF,
5′-ATGTATCGATCAACGAGTTC-3′; andMinDR, 5′-TTAGTTCCTGCTAAATAATC-3′.
PCR reactions were done using the Phusion high-fidelity DNA polymerase
(New England BioLabs) where the initial denaturation at 98 °C for 30 s was
followed by 30 cycles of DNA denaturation at 98 °C for 10 s, primer annealing
at 40 °C for 30 s, and strand elongation at 72 °C for 60 s, with a final extension
at 72 °C for 10 s. PCR products were purified by gel extraction using the
Nucleospin Extract II kit (Macherey-Nagel) and were directly sequenced using
the PCR primers.

Phylogenetic Analyses. For each protein, alignments were generated from
datasets including all known eukaryotic homologs and bacterial homologs
harvested from NCBI using MUSCLE v.3.8.31 (58) or MAFFT-L-INSI v7.149b
(59–61), and trimmed using BMGE 1.1 (62) (-m BLOSUM30; all other pa-
rameters default). Preliminary phylogenies were generated using FastTree,
and datasets were manually refined. Twenty independent Maximum Like-
lihood (ML) tree estimates and 200 bootstrap replicates were generated
using RAxML v.8.0.23 (63) under the PROTGAMMALG4X (64) model of
amino acid substitution. Bayesian inference posterior probabilities were
calculated using PhyloBayes v.3.3f (65) under the catfix C20 model of evo-
lution. We tested whether specific phylogenetic hypotheses were rejected
by the data using the approximately unbiased (AU) test implemented in
CONSEL v.1.20 (66) (Table S2). Maximum-likelihood trees given specific
constraints (i.e., corresponding to specific hypotheses) were generated using
RAxML. In addition, the 200 trees from bootstrap replicates were included in
the hypothesis-testing analyses performed with CONSEL.

Yeast Culture, Transformation, and Microscopy. Saccharomyces cerevisiae strain
YPH499 was grown at 30 °C on YPD medium or selective medium without
uracil after lithium-acetate transformation. For ectopic expression of AiMinC,
-D, and -E, the complete AiMinC, -D, and -E ORFs were amplified by PCR from
A. incarcerata cDNA. For ectopic expression of DpMinC, -D, and -E, the com-
plete DpMinC, -D, and -E ORFs were amplified by PCR from synthesized DNA
fragments, containing Escherichia coli codon-optimized sequences. The
resulting PCR products were cloned separately into pUG35 using XbaI/ClaI
restriction sites (AiMinD and DpMinC and -E) or BamHI/HindIII restriction sites

Fig. 3. Min proteins from D. purpureum (A) and A. incarcerata (B) expressed in S. cerevisiae to confirm predicted mitochondrial targeting. Differential
interference contrast (DIC) images of S. cerevisiae cells expressing Min fusion proteins (Left); in green, MinC, MinD, or MinE expressed with the C-terminal GFP
tag in S. cerevisiae; in red, mitochondria labeled with MitoTracker Red CMXRos (Mito); merged images (Merge) show mitochondrial localization of all Min
proteins. (Scale bars: 5 μm.)
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(AiMinC and -E and DpMinD), allowing the expression of GFP on the C-ter-
minus of each protein. For fluorescence microscopy, cells were incubated with
MitoTracker Red CMXRos (1:10,000) for 10 min, washed once in PBS, and
mounted in 2% low-melting agarose. Cells were viewed using an Olympus
IX81 microscope and a Hamamatsu Orca-AG digital camera using the cell̂ R
imaging program at 100× magnification.

Results and Discussion
We identified sequences encoding at least one Min protein from
a number of eukaryotic taxa (Fig. 2 and Table S1), including an-
cestrally plastid-lacking lineages such as the apusomonad Theca-
monas trahens, the breviate Pygsuia biforma, the jakobid excavates
A. godoyi and A. incarcerata, the malawimonad M. californiana,
and several amoebozoan lineages, such as D. purpureum. Three
previously reported FtsZ sequences identified in haptophytes
(Gephyrocapsa oceanica and Pleurochrysis carterae) and a glau-
cophyte (Cyanophora paradoxa) (29) were excluded as probable
α-proteobacterial contaminants, based on their position in pre-
liminary phylogenies, their high degree of similarity to α-pro-
teobacterial sequences, and, in the case of C. paradoxa, our
inability to recover the reported mitochondrial FtsZ sequence
from the genome sequence (67). All complete genomes encoding
at least one Min protein also encoded at least one FtsZ homolog;
however, the reverse was not true. Min proteins were retained
not only in lineages with typical aerobic mitochondria, but also in
lineages possessing mitochondrion-related organelles (MROs)
such as A. incarcerata (68) and P. biforma (69).
Most of these Min and FtsZ homologs possess predicted mito-

chondrial targeting peptides (Table S1). To confirm these pre-
dictions, we expressed GFP-tagged homologs of Min proteins
in S. cerevisiae, in conjunction with the mitochondrial stain
MitoTracker Red CMXRos (Fig. 3). We chose Min proteins
from two representative taxa lacking plastids: the amoebozoan
D. purpureum (Fig. 3A) and the jakobid excavate A. incarcerata
(Fig. 3B). In both cases, the GFP signal colocalized with the Mito-
tracker signal, supporting the predicted targeting of A. incarcerata
and D. discoideumMin proteins to the inside of the mitochondria.
Single-protein phylogenies of MinC, -D, -E, and FtsZ recover

all predicted mitochondrial homologs as well-resolved clades,
distinct from known and predicted plastid sequences (Figs. 4 and
5 and Figs. S1 and S2). For MinD (Fig. 4) and FtsZ (Fig. 5 and
Fig. S3), the hypothesis that the plastid and mitochondrial
homologs group in a monophyletic clade was rejected by AU
tests (Table S2); however, this hypothesis could not be rejected
for the more divergent MinC (Fig. S1) and MinE (Fig. S2). In all
three Min phylogenies, mitochondrial homologs emerged within
proteobacterial sequences although, because the resolution
within that clade was too poor to identify the closest homologs
(Fig. 4 and Figs. S1 and S2), we cannot exclude the possibility
that these proteins originate from a group other than the
α-proteobacteria.
An early study by Miyagishima et al. (70) reported the pres-

ence of two copies of plastid-targeted FtsZ in photosynthetic
eukaryotes, as well as two copies of predicted mitochondrial
FtsZ in C. merolae and D. discoideum. The authors hypothesized
that duplication of FtsZ occurred early during primary plastid
endosymbiosis and that a similar process might also have ac-
companied the establishment of the protomitochondrial endo-
symbiont. Our broader taxonomic sampling allowed us to confirm
the presence of two types of mitochondrial FtsZ homolog in the
majority of the eukaryotic taxa examined. They form two distinct
phylogenetic clades, each of which contains one homolog from
each eukaryote. In addition, although these clades lack strong
statistical support, one encompasses copies retaining a variable
C-terminal spacer domain that is also found in bacterial homologs
(71) whereas sequences from the other clade lack this domain
(Fig. 5 and Fig. S3). A robust grouping of α-proteobacterial and
both putative mitochondrial FtsZ paralogs was recovered. We

Fig. 4. Unrooted maximum likelihood (ML) tree of MinD sequences. Phy-
logenetic analyses were performed on 328 sequences and 226 sites, using
RAxML and PhyloBayes. Bootstrap support values greater than 50% and
posterior probabilities greater than 0.5 are shown. Branches with 100%
bootstrap support and posterior probability of 1.0 are indicated by black
circles. Eukaryotes are shaded blue, cyanobacteria green, proteobacteria
orange, and α-proteobacteria magenta.
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subsampled these sequences, using γ-proteobacterial sequences as
an outgroup, and reanalyzed them in an attempt to better resolve
this clade. We also excluded amoebozoan sequences because of
their unusually high AT content and long branches in preliminary
trees (Fig. S3). Unfortunately, we were unable to obtain better
resolution of the branching order among α-proteobacterial and
eukaryotic clades. Nevertheless, the C-terminally truncated FtsZ
proteins were identified only in eukaryotes, and we did not identify
more than one FtsZ homolog in α-proteobacteria. We therefore
conclude that the duplication event that gave rise to the FtsZ
paralogs found in extant eukaryotes likely occurred early in
eukaryotic evolution, rather than earlier, in the α-proteobacterial
lineage that gave rise to the mitochondrion.
Altogether, these lines of evidence are consistent with the

hypothesis that the nuclear-encoded mitochondrial Min and
FtsZ homologs of eukaryotes originated by endosymbiotic gene
transfer from the ancestral mitochondrial endosymbiont.
Although found in diverse eukaryotes, the Min proteins are

sparsely distributed, a pattern that can only partly be reconciled
with taxonomic representation in the available data. A striking
example of gene loss is seen in the Mycetozoa (Dictyostelium
spp., Acytostelium subglobosum, and Polysphondylium pallidum).
Here, D. discoideum, Dictyostelium citrinum, Dictyostelium inter-
medium, and Dictyostelium firmibasis have retained only FtsZ
whereas their sister taxon D. purpureum and the more basal taxa
P. pallidum, Polysphondylium violaceum, and A. subglobosum
have additionally maintained all three Min proteins. Meanwhile,
the yet more distantly related Dictyostelium fasciculatum (72, 73)
seems to have independently lost the Min proteins and, like D.
discoideum, only possesses FtsZ. This overall pattern raises the
question of why Min proteins were retained in some taxa, yet lost
in others. No correlation was found with mitochondrial cristae
morphology, because Min proteins were found in organisms
possessing discoid (e.g., P. kirbyi) (56) or tubular (e.g., A. godoyi)
(74) cristae, as well as in lineages with MROs that apparently lack
cristae entirely (e.g., A. incarcerata and P. biforma) (68, 69). Nor is
there any obvious difference in either overall mitochondrial
morphology or lifestyle between lineages that possess Min pro-
teins and lineages that do not. Kiefel et al. (29) have raised the
possibility that FtsZ is lost in lineages with reticulate mito-
chondria, and thus the placement of the division site may not
affect mitochondrial function. This hypothesis remains a plausi-
ble explanation that might apply to Min proteins; A. godoyi and
P. biforma each possess a single mitochondrion or mitochon-
drion-related organelle (74, 75), and T. trahens is predicted to
have discrete, nonbranching mitochondria based on 3D recon-
structions (76) (Fig. 2). Meanwhile, a number of the lineages
lacking Min proteins are known to possess reticulate mitochon-
dria in at least one tissue and during at least one life stage, in-
cluding opisthokonts (77), plants (78, 79), the euglenozoan
Euglena gracilis (80), and apicomplexa (81, 82) (Fig. 2). One
exception seems to be Phytophthora cinnamomi, an organism
described in the literature as having 3–4 reticulate mitochondria
per cell (83), and in which we found Min homologs. Un-
fortunately, there are relatively few taxa in our survey for which
detailed microscopy data are available that would permit con-
clusions to be drawn about the 3D structure of their mitochon-
dria. Furthermore, many organisms known to possess reticulate
mitochondria may also possess unbranched mitochondria in
some tissues, during some parts of their life cycle (79), or
alongside reticulate mitochondria, as in P. cinnamomi (83). It is
therefore also possible that the presence or absence of MinFig. 5. Unrooted maximum likelihood (ML) tree of FtsZ sequences. Phylo-

genetic analyses were performed on 327 sequences and 257 sites, using
RAxML and PhyloBayes. Bootstrap support values greater than 50% and
posterior probabilities greater than 0.5 are shown. Branches with 100%
bootstrap support and posterior probability of 1.0 are indicated by black
circles. Eukaryotes are shaded blue, cyanobacteria green, proteobacteria
orange, and α-proteobacteria magenta. Eukaryotic paralogs lacking the
variable C-terminal spacer region are indicated by stars whereas those with

incomplete sequence at the C-terminus are indicated by question marks. The
exception to this pattern is a Corethron hystrix sequence that, despite branching
with other stramenopiles in the MtFtsZ1 clade, possesses a C-terminal variable
region (Fig. S3).
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proteins reflects some unknown transient mitochondrial mor-
phological feature specific to replication. Clearly, genetic and
functional studies of mitochondrial Min systems are greatly
needed to understand their precise roles.
Further questions are raised by the apparent absence of

homologs of all other components of the bacterial divisome from
the surveyed eukaryotes, including ZipA, ZapA, FtsA, FtsB,
FtsE, FtsI, FtsK, FtsL, FtsN, FtsQ, FtsW, and FtsX. Searches of
databases using α-proteobacterial and E. coli homologs of these
proteins as queries yielded no candidate homologs. The bacterial
divisome components recruited late in the division process (FtsB,
FtsE, FtsI, FtsL, FtsN, FtsQ, FtsW, and FtsX) are primarily in-
volved in facilitating peptidoglycan synthesis, and so their ap-
parent absence is perhaps not surprising, given the lack of
a peptidoglycan wall in any mitochondria. However, it is not
clear how the Z-ring remains stabilized and anchored to the
membrane in the absence of FtsA, ZipA, or ZapA. ZED,
a coiled-coil domain protein with 25.8% sequence identity to
ZapA, is reported to be involved in mitochondrial Z-ring for-
mation in the red alga C. merolae (84). However, we were unable
to identify any homologs of this protein in other eukaryotes. The
two distinct FtsZ paralogs may form an alternating copolymer
that forms the Z-ring; or the Z-ring might be composed of
a single paralog whereas the second paralog might instead be
involved in attachment of the Z-ring to the membrane. In either
case, the anchoring mechanism of FtsZ remains a mystery.
Recent work (85) implicates the endoplasmic reticulum (ER)

in the control of the mitochondrial division site location and
subsequent Dnm1p recruitment in yeast. This type of external
division site control contrasts with that of the Min protein sys-
tem, which regulates division site location from the mitochon-
drial matrix. The contrast between these control mechanisms
raise the questions of when the role of the ER in mitochondrial

division may have emerged; whether any taxa possess both Min
proteins and Dnm1p/Drp1; and how these organisms (if they
exist) recruit Dnm1p/Drp1 in the absence of ER-mediated di-
vision site control. Therefore, an important avenue of further
study is the taxonomic distribution of mitochondrial Dnm1p/
Drp1 and its functional interplay with FtsZ. Study of this dis-
tribution is hampered by the fact that multiple paralogs of
dynamins have different functions within eukaryotic cells (41),
including vesicular trafficking in yeast (86), and unknown func-
tions in less-studied organisms such as T. vaginalis (38). These
proteins lack N-terminal targeting peptides, and so, in the ab-
sence of localization data, a mitochondrial function cannot
clearly be ascribed to any one of them based on sequence data
alone. In any case, investigations into the molecular mechanisms
governing the coordination of the various kinds of inner and
outer contractile rings are critically needed in diverse eukaryote
lineages to fully understand what are features of the division
system of the last eukaryotic common ancestor and what are
more recent lineage-specific innovations.
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