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ATP citrate lyase (ACL) is an enzyme critical to the generation of cytosolic acetyl-CoA in eukaryotes. In
most studied organisms, ACL activity is conferred in combination by two proteins, ACLA and ACLB
(dsACL); however, animals encode a single-subunit ACL (ssACL) – the result of a gene fusion event.
Through phylogenetic analyses, we investigated the evolution of ACL in a broad range of eukaryotes,
including numerous microbes (protists). We show that the fused form is not restricted to animals, and
is instead widely distributed among eukaryotes. Furthermore, ssACL and dsACL are patchily distributed
and appear to be mutually exclusive; both types arose early in eukaryotic evolution. Finally, we present
several compelling hypotheses of lateral gene transfer and gene loss, along with the secondary gene
fission of ssACL in Ascomycota. Collectively, our in-depth analyses suggest that a complex suite of
evolutionary events, usually considered rare, has shaped the evolution of ACL in eukaryotes.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction enzyme that catalyzes the ATP-dependent cleavage of citrate into
Acetyl coenzyme A (acetyl-CoA) is a high-energy metabolite that
is a product of carbohydrate, amino acid, and lipid catabolism, and
the precursor of numerous anabolic pathways (Oliver et al., 2009).
Given its role at the ‘hub’ of cellular metabolism, a thorough under-
standing of acetyl-CoA biosynthesis is critical; this is especially true
of eukaryotes, as acetyl-CoA is membrane-impermeable, and dis-
tinct biosynthetic mechanisms are therefore required in the various
subcellular compartments, including mitochondria, chloroplasts,
peroxisomes, and the cytosol (Oliver et al., 2009).

In animals (Elshourbagy et al., 1990, 1992), land plants (Fatland
et al., 2002), a glaucophyte alga (Ma et al., 2001), and filamentous
fungi (Hynes and Murray, 2010; Son et al., 2011), the major cytoso-
lic source of acetyl-CoA is ATP-citrate lyase (ACL; EC 2.3.3.8), an
oxaloacetate and acetyl-CoA. Typically, ACL’s substrate is
mitochondrion-derived citrate; this enzyme therefore plays a role
in the ‘citrate shuttle’ that effects the net transfer of acetyl-CoA
equivalents to the cytosol for fatty acid biosynthesis. The
acetyl-CoA generated by ACL is a key substrate of myriad other
downstream anabolic processes in eukaryotes, including the
biosynthesis of sterols, waxes, isoprenoids, and flavonoids (Oliver
et al., 2009), and nuclear histone acetylation (Wellen et al., 2009).

ACL is also encoded in the genomes of prokaryotes; however, it
is sparsely distributed, and is found only in a few species belonging
to e-proteobacteria, Aquificae, Chlorobi, and Euryarchaeota, many
of which are thermophiles living near deep-sea vents (Campbell
and Cary, 2004). Although the chemical reaction catalyzed by
ACL is the same as in eukaryotes, the physiological context is dif-
ferent: in prokaryotes, ACL is a component of the reverse TCA cycle,
a reductive, carbon-fixing pathway that serves as an alternative to
the Calvin–Benson–Bassham reductive pentose phosphate cycle
(Buchanan and Arnon, 1990). Thus, there has been a functional
modification in eukaryotes, with ACL shifting from a role in permit-
ting autotrophic growth, to supplying a key intermediate in various
eukaryotic anabolic processes (Fatland et al., 2002).

In bacteria (Hügler et al., 2007; Kanao et al., 2001), a glauco-
phyte alga (Ma et al., 2001), green algae/land plants (Fatland
et al., 2002), and filamentous fungi (Nowrousian et al., 2000),
ACL enzyme activity requires ACLA, and ACLB (referred to here as
dual-subunit ACL, or dsACL) (Kanao et al., 2001). ACLA is
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homologous to the b subunit of succinyl-CoA synthetase (SCS),
while ACLB is homologous to the a subunit of SCS, fused to a small
portion homologous to citrate synthase (CS). An evolutionary
model for the origin of ACL from the aforementioned TCA cycle
enzymes via gene duplication, fusion, and divergence has been
suggested (Fatland et al., 2002). In contrast, animal ACL is a fusion
protein (referred to here as single-subunit ACL, or ssACL)
(Elshourbagy et al., 1990, 1992); the N-terminal portion is homol-
ogous to ACLA, and the C-terminal portion to ACLB. It was sug-
gested that ssACL represents a molecular synapomorphy of
animals (Fatland et al., 2002), although ssACL homologs were
recently identified in some non-ascomycete fungi (Hynes and
Murray, 2010).

Here, we have undertaken a comprehensive phylogenetic anal-
ysis of ACL across eukaryotes. We demonstrate that ssACL and
dsACL constitute ancient, distinct monophyletic lineages, that
dsACL and ssACL have been laterally transferred and lost numerous
times, and, contrary to previous analyses, that ssACL is likely the
product of a gene fusion event that occurred very early in eukary-
otic evolution.
2. Methods

2.1. Taxon sampling and multiple alignment

ssACL, ACLA and ACLB homologs were identified via BLAST
queries of public databases (NCBI, Sanger Institute and MMETSP
(Keeling et al., 2014)). In lineages with large numbers of ACL homo-
logs (e.g., fungi, and animals) a subset of phylogenetically repre-
sentative sequences was manually selected. Alignments were
generated with MAFFT L-INS-i v7 (Katoh and Standley, 2013).
Individual ACLA/ssACL and ACLB/ssACL alignments were concate-
nated, and trimmed automatically with BMGE 1.0, using the
BLOSUM50 similarity matrix (Criscuolo and Gribaldo, 2010).

2.2. Phylogenetics

Maximum Likelihood (ML) phylogenies were estimated with
RAxML version 8.0.19 (Stamatakis, 2014), under the
PROTGAMMALGF model. Bootstrap support values estimated from
1000 replicates were mapped onto the estimated ML tree (obtained
by 100 heuristic searches).

Bayesian analyses were carried out with PhyloBayes version
3.3f (Lartillot et al., 2009) by running two chains under the catfix
C20 + Poisson model, until convergence (maxdiff� 0.1) after dis-
carding 3000 burn-in trees. Posterior probabilities were mapped
onto the ML tree.
3. Results and discussion

3.1. ACL gene structure and taxonomic distribution

We confirm here the presence of two separate genes for ACLA
and ACLB proteins in all prokaryotes encoding ACL, as well as all
dsACL-encoding members of the eukaryotic supergroup
Archaeplastida, and ascomycete fungi (Fig. 1). Additionally, we
identified ACLA and ACLB in the jakobid Andalucia godoyi
(Excavata), several members of Amoebozoa (e.g., Mycetozoa and
certain Discosea), and the apusomonad Thecamonas trahens – a
putative sister of opisthokonts (Brown et al., 2013).

Surprisingly, in addition to the extensively characterized ssACL
of animals, and the ssACL of some fungi, we identified ssACL in all
ACL-encoding members of the vast SAR (Stramenopiles +
Alveolata + Rhizaria) supergroup, as well as other opisthokonts,
haptophytes, the putatively basal cryptophyte Palpitomonas bilix
(Yabuki et al., 2014), and numerous amoebozoans (e.g., Tubulinea
and a few Discosea; Fig. 1). It is therefore apparent that ssACL is
not an animal-specific trait (Fatland et al., 2002).

Hereafter, we reconstruct the evolutionary history of ACL,
updating and extending upon earlier analyses. We clarify the rela-
tionships between dsACL and ssACL by carrying out in-depth phylo-
genetic analyses using a broad taxonomic sample of eukaryotes.

3.2. Eukaryotic ssACL and dsACL resolve into two monophyletic groups

We confirmed that all the subunits/domains constituting ACL
apparently share the same evolutionary histories by performing
separate phylogenetic analyses of homologs of: (1) ACLA and SCS
b; (2) ACLB and SCS a; and (3) ACLB and CS (not shown). In agree-
ment with previous analyses (Fatland et al., 2002; Hügler et al.,
2007), our Maximum Likelihood (ML) and Bayesian phylogenetic
reconstructions suggest that ACL homologs from green sulfur bac-
teria (i.e., Chlorobi) are basal to all others, and that bona fide ACL
likely originated in this clade. Although the long-branch leading
to this group does not preclude a long-branch attraction artifact,
it is likely that ACL is ancestrally bipartite, and that ssACL, as
observed in numerous eukaryotes, is a derived feature.

To improve phylogenetic resolution, we concatenated ACLA and
ACLB datasets, using Chlorobi as outgroup (Fig. 2). We found that
each of ssACL and eukaryotic dsACL constitute highly supported
monophyletic groups, with the exception of ACL from ascomycetes
(discussed in Section 3.4). It is thus reasonable to conclude that
eukaryotes acquired ACLA and ACLB from a prokaryotic source –
although the backbone is not sufficiently resolved to infer the exact
nature of the donor. Similarly, the low backbone resolution pre-
vents us from favoring an origin of ssACL through gene duplication
within the eukaryotic branch over a second LGT from prokaryotes
to eukaryotes before LECA. In either case, a single ancient gene
fusion event took place early in the eukaryotic line and led to the
establishment of ssACL.

3.3. ssACL and dsACL likely co-existed in LECA

Although ACL can be found in virtually all major eukaryotic
groups, the patchy distribution of both ssACL and dsACL makes it
difficult to ascertain precisely the timing of their emergence in
eukaryotes (Fig. 1). We suggest that both isoforms of ACL likely
arose early in eukaryotes, possibly prior to the last eukaryotic com-
mon ancestor (LECA).

The internal relationships within main eukaryotic groups in the
ssACL clade are congruent with organismal phylogeny, and are
usually strongly supported (Fig. 2). In combination with its broad
distribution, this suggests that ssACL was likely present in the
ancestor of SAR, Opisthokonta, and Haptophyta (i.e., LECA), and
was subsequently inherited vertically (with a few exceptions dis-
cussed in Section 3.4). An alternative explanation is that ssACL
was dispersed by horizontal transfer between eukaryotic lineages.
However, this would have had to happen shortly after LECA, but
before the diversification within eukaryotic supergroups (i.e.,
within �300 million years (Eme et al., 2014)). Regardless, the
fusion of ACLA and ACLB likely occurred early in the eukaryotic
lineage.

We have identified dsACL in Archaeplastida, in some distantly
related amoebozoans (e.g., Mycetozoa and Discosea), in the exca-
vates Andalucia godoyi and Bodo saltans, and in the apusomonad,
Thecamonas trahens (Fig. 1). Thus, dsACL likely appeared in eukary-
otes prior to the ancestors of Amoebozoa and Archaeplastida, and
therefore, before LECA. Alternatively, ssACL is the ancestral isoform
of ACL in eukaryotes, and its distribution is the result of ssACL fis-
sion, for instance in the ancestor of Archaeplastida, with subse-
quent lateral gene transfers (LGTs) to other eukaryotes.
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Amoebozoans encode either, but not both, of the ACL variants,
and the distribution of these forms conflicts with amoebozoan
phylogeny (Cavalier-Smith et al., 2014; Lahr et al., 2011); fairly clo-
sely related organisms do not share the same character state (e.g.,
Pessonella sp. and Vannella robusta; family Vannellidae), whereas
more distant groups do. It is difficult to envision how both versions
of ACL would have persisted until so recently, with one subse-
quently disappearing altogether in multiple lineages indepen-
dently. This indicates that vertical inheritance with differential
loss is unlikely to provide a comprehensive explanation for the dis-
tribution of ACL; LGT events are presumably also responsible for
the observed pattern.

3.4. ACL evolution is littered with loss, gene transfer, and secondary
fission events

Although ancient LGT events are difficult to assess, we have
identified several more recent LGT candidates involving ACL: (1)
from stramenopiles to dinoflagellates; (2) from Discosea
(Amoebozoa) to the apusozoan Thecamonas; and (3) from red algae
to the jakobid Andalucia godoyi (Figs. 1 and 2). The apparent con-
comitant transfer of two genes is surprising, as gene order is com-
monly shuffled rapidly in eukaryotic genomes. Interestingly,
however, ACLA and ACLB are adjacent in the genome of the rhodo-
phyte Galdieria sulphuraria, as well as in Dictyostelium discoideum.
Unfortunately, it was not possible to investigate gene organization
in Discosea, as only transcriptome data are generally available
(Keeling et al., 2014). Nevertheless, that ACLA and ACLB are neigh-
boring genes in some eukaryotes indicates that the transfer of both
genes through a single LGT event is feasible.

In contrast, the ascomycete dsACL branches with its ssACL fun-
gal counterparts (Fig. 2), clearly demonstrating reversion to the
ancestral state via gene fission, rather than LGT from another
dsACL-carrying lineage. We did not identify ssACL in any other
ascomycete, indicating that ssACL split early in the evolution of
Ascomycota and that opisthokonts ancestrally possessed ssACL, in
contradiction to prior hypotheses that proposed a fusion of ACLA
and ACLB in animals (Fatland et al., 2002).

Along with LGT, fusion, and fission events, ACL is absent from
numerous individual lineages, suggesting secondary losses
(Fig. 1). For instance, while most SAR members encode ACL (typi-
cally ssACL), ciliates possess no ACL homologs. In addition, many
lineages that have lost ACL are anaerobic (e.g., Blastocystis,
Entamoeba and Mastigamoeba) and/or parasitic (e.g.,
Trypanosoma, Giardia and Trichomonas); unsurprisingly, this
absence correlates fairly well with the absence of CS, and, poten-
tially, the absence of ACL’s substrate, citrate.

A reasonable scenario accounting for the distribution of ACL in
eukaryotes is that LECA possessed both variants, with subsequent
differential losses. Nonetheless, we have not found any instances
of ssACL and dsACL co-occurring in a single species. This is some-
what reminiscent of the case of EF1-a (elongation factor 1-alpha)
and EFL (elongation factor-like), functionally overlapping core
components of the eukaryotic translation machinery that are
patchily distributed across eukaryotes. To date, only a dozen spe-
cies that encode both EF-1a and EFL have been identified; in these
organisms, EF-1a is transcriptionally suppressed relative to EFL
(Kamikawa et al., 2013). A similar scenario may account for the dis-
tribution of ssACL and dsACL: given that both isoforms overlap
functionally, one of the two – depending on the lineage – might
have become progressively less expressed, leading to its eventual
loss. In this vein, as much of our analysis is based on transcriptome
data, it is possible that alternative isoforms might not be identified
if poorly expressed. Nuclear genomic sequences from diverse
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eukaryotic microbes will be required to definitively resolve this
issue.

4. Conclusions

As sequence data accumulate, more prokaryote-derived gene
fusions are being identified in eukaryotic nuclear genomes
(Gawryluk et al., 2014; Maguire et al., 2014; Stairs et al., 2014;
Stechmann and Cavalier-Smith, 2002); in many cases, these genes
derive from relatively recent transfer/fusion events. In contrast, we
have demonstrated here that the fusion of ACLA and ACLB into
ssACL is not a curious feature of animals; rather ssACL, along with
dsACL, likely represents an ancestral feature of eukaryotic
genomes.

Our phylogenetic analyses demonstrate that the evolution of
ACL in eukaryotes has involved vertical inheritance, LGT, extensive
gene loss, and gene fusion/fission. Moreover, these results empha-
size the insidiousness of homoplasy in supposedly rare genomic
changes (Maguire et al., 2014), and how the propensity to overstate
the importance of such characters (Stechmann and Cavalier-Smith,
2002) may ultimately impair the interpretation of evolutionary
relationships.
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