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Abstract
Based on phylogenetic analyses and gene distribution patterns of a few complete genomes, a new distinct phylum within the Archaea, the
Thaumarchaeota, has recently been proposed. Here we present analyses of six archaeal fosmid sequences derived from a microbial hot spring
community in Kamchatka. The phylogenetic analysis of informational components (ribosomal RNAs and proteins) reveals two major (hyper-)
thermophilic clades (“Hot Thaumarchaeota-related Clade” 1 and 2, HTC1 and HTC2) related to Thaumarchaeota, representing either deep
branches of this phylum or a new archaeal phylum and provides information regarding the ancient evolution of Archaea and their evolutionary
links with Eukaryotes.
� 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Soon after its discovery, the domain Archaea has been
divided into two major phyla, the Euryarchaeota and the
Crenarchaeota (Woese et al., 1990). Though members of this
domain were initially considered to be restricted to extreme
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and/or anaerobic environments, molecular environmental sur-
veys have later demonstrated that Archaea are also found in
moderate environments including soils, sediments as well as
marine and freshwater habitats (Robertson et al., 2005;
Schleper et al., 2005). Furthermore, these surveys revealed
new major archaeal lineages, including putative phyla such as
Korarchaeota (Barns et al., 1996), Nanoarchaeota (Huber
et al., 2002), Thaumarchaeota (initially referred to as meso-
philic Crenarchaeota or group I, and encompassing all
currently known Ammonia-Oxidizing Archaea (AOA))
(Brochier-Armanet et al., 2008; DeLong, 1992; Fuhrman
et al., 1992), as well as the Hot Water Crenarchaeotic Group
I (HWCGI)/‘Aigarchaeota’ (Nunoura et al., 2011). Compara-
tive genomic and phylogenetic analyses have confirmed the
initial proposal of Korarchaeota as a separate phylum within
the Archaea (Elkins et al., 2008), as well as of Thaumarch-
aeota (Spang et al., 2010), whereas Nanoarchaeota have been
sson SAS. All rights reserved.
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suggested to represent a fast evolving lineage within the
Euryarchaeota (Brochier et al., 2005; Makarova and Koonin,
2005). Finally, the taxonomic status of ‘Aigarchaeota’ as a
separate archaeal phylum remains under debate (Brochier-
Armanet et al., 2012; Gribaldo and Brochier-Armanet, 2012).

The diversity and abundance of SSU rRNA and amoA
genes (encoding subunit A of ammonia monooxygenase)
indicate that Thaumarchaeota range among the most wide-
spread and prolific microorganisms on our planet (Gubry-
Rangin et al., 2011; Karner et al., 2001; Leininger et al.,
2006; Wuchter et al., 2006) and encompass diverse sub-
lineages e group I.1a, group I.1b or, HWCG III/Thermophilic
AOA (ThAOA) e represented by cultivated members
(Konneke et al., 2005; Tourna et al., 2011) or enriched cultures
(de la Torre et al., 2008; French et al., 2012; Hatzenpichler
et al., 2008; Jung et al., 2011; Kim et al., 2012; Lehtovirta-
Morley et al., 2011; Mosier et al., 2012b,c). Further unculti-
vated lineages with a putative affiliation to Thaumarchaeota
have been identified by environmental SSU rRNA surveys
(e.g. SCG, FSCG, group I.1c, group 1A/psL12, SAGMCG-I)
(see Brochier-Armanet et al., 2012; Pester et al., 2011 and
references therein). Finally, genome sequences are currently
only available for a few members of the groups I.1a and I.1b
within the Thaumarchaeota (Blainey et al., 2011; Hallam
et al., 2006; Kim et al., 2011; Mosier et al., 2012a,b; Spang
et al., 2012; Walker et al., 2010). Inclusion of more
sequence data is thus needed to better characterize the di-
versity and the boundaries of this phylum.

Although widely distributed across the archaeal tree,
hyperthermophiles constitute the first diverging lineages of the
currently described archaeal phyla (Crenarchaeota, Eur-
yarchaeota, Korarchaeota) indicating that the last common
ancestor of Archaea might have been a hyperthermophile
(Forterre et al., 2000, 2002; Gribaldo and Brochier-Armanet,
2006; Stetter, 1996; Woese, 1987; Woese et al., 1990).
Thaumarchaeota are no exception to this observation as
testified by the discovery of deeply branching thaumarchaeotal
SSU rRNA and amoA genes in terrestrial hot springs
(Dodsworth et al., 2011; Reigstad et al., 2008; Zhang et al.,
2008), and the enrichment culture of ‘Ca. Nitrosocaldus yel-
lowstonii’ (a representative of ThAOA/HWCG III group)
which grows at 74 �C (de la Torre et al., 2008). This suggests
that mesophilic representatives of this phylum are derived
from a thermophilic or hyperthermophilic ancestor and
adapted secondarily to colder habitats (Barns et al., 1996;
Brochier-Armanet et al., 2012; Hatzenpichler et al., 2008;
Lopez-Garcia et al., 2004; Preston et al., 1996; Reigstad et al.,
2008; Schleper et al., 1997). However, because of the scarcity
of biological and genomic data, these thermophilic thau-
marchaeotal lineages are poorly known.

Here we investigate a fosmid library derived from a
terrestrial hot spring (85 �C and pH 5.5) from Uzon Caldera in
Kamchatka. The phylogenetic analyses of SSU and LSU
rRNA and informational proteins carried by six large genomic
fragments revealed two major groups, HTC1 (Hot
Thaumarchaeota-related Clade 1) and HTC2 that branched-off
before the diversification of the currently recognized
thaumarchaeotal lineages. The analysis of the 249 genes
encoded by these genomic fragments provides first insights
into these two groups. The evolutionary relationships between
HTC1, HTC2, Thaumarchaeota and other archaeal lineages, as
well as between Eucarya and Archaea, are discussed.

2. Materials and methods
2.1. Site description and sampling
The terrestrial hot spring, referred to as Kam37, is located
close to the ranger hut in the Central thermal field of Uzon
Caldera in Kamchatka, Russia. It had a small bottom opening
of 10 � 15 cm with a steady discharge and very little rim
overflow. The sample taken in August 2005 was harvested
with a sterile syringe well below the surface. It consisted of
finger-long greyish filaments continuously flushed and
attached to the edges of the small spring opening. The tem-
perature within these filaments was 85 �C, while the spring
fluid had a temperature of 91 �C and a pH of 5.5. The sample
was taken from the bottom of the accessible part of the hot
spring to avoid material that had been exposed to temporary
dryness or longer periods of direct air exposure. Chemical
analyses showed the thermal fluid to be mainly composed of
Na (225 mg/l), K (16 mg/l), Ca (35 mg/l), and Mg (3.2 mg/l)
with high contents of Fe (789 mg/l), Mn (370 mg/l) and B
(17 mg/l). These values were similar to the chemical data
obtained from the springs referred to as Jenn’s Pools located
close to Kam37 (Kyle et al., 2007).
2.2. Extraction of high molecular weight DNA
To obtain high molecular weight (hmw) DNA for the
metagenomic analyses, 15.4 g (wet weight) of filaments were
ground in a sterile mortar. The material was briefly centrifuged
(10 s at 6000� g) in a tabletop centrifuge to remove remnants
of ungrounded material. The supernatant was then centrifuged
at 10,000� g for 30 min at 4 �C to pellet the cells. The cells
were embedded in low-melt agarose plugs (1% agarose) and
lysed chemically by lysozyme and Proteinase K as described
elsewhere (Quaiser et al., 2002; Reigstad et al., 2011). The
agarose plugs were stored at 4 �C in 1� TE buffer with
200 mM EDTA until construction of the metagenomic library.
2.3. Construction and screening of the metagenomic
fosmid library
The hmw DNA from the agarose plugs was purified and
size-analysed using a two-phase pulse-field gel electrophoresis
(200 V, 5e50 s, 20 h, 14 �C) as described elsewhere (Quaiser
et al., 2002; Reigstad et al., 2011). Approximately 0.5 mg of
hmw DNA was used to construct the metagenomic library
using the fosmid vector pEpiFOS-5 (EpiFOS� Fosmid Li-
brary Production Kit, Epicentre) as recommended by the
manufacturer. Approximately 36,000 recombinant clones were
transferred to 384-well microtitre plates containing 50 ml of
LBþ medium and 7% glycerol (v/v) (Reigstad et al., 2011).
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The plates were incubated at 37 �C for 24 h, and were sub-
sequently stored at �80 �C. To facilitate PCR screening of the
fosmid library, a DNA pool representing all fosmids of one
384-well microtitre plate was made by transferring a print of
the plate onto an LB plate and subsequently pooling all col-
onies as described previously (Schleper et al., 1998). The
metagenomic library was screened for archaeal SSU rRNA
genes using primers 20F/958R as described below.
2.4. Construction of SSU rRNA clone libraries and
taxonomic affiliation of SSU rRNA sequences
Two SSU rRNA gene libraries were made: one archaeal-
specific library with the primers 20F/958R (DeLong, 1992),
and one prokaryotic library using the primers 515F (Moyer
et al., 1998) and 1408R (Amann et al., 1995). All libraries
(including the fosmid library) were made from the same input
DNA harvested from the agarose plug. 108 clones obtained
from products with prokaryotic primers and 149 clones from
the archaeal-specific library were analysed using RDPII (v8.1)
Chimera Check (Cole et al., 2007) and the Bellerophon
Chimera Detection Program (Huber et al., 2004), and their
affiliation was determined by using the Maximum Likelihood
and Neighbour Joining methods implemented in ARB
(v07.12.07org) (Ludwig et al., 2004) on the data from the ARB-
compatible SILVA database (Release104) (Pruesse et al., 2007).
2.5. Sequencing of fosmids and gene annotation
In order to expand our knowledge on the two clusters of
interest (HTC1 and HTC2) revealed by the phylogenetic an-
alyses of SSU rRNA sequences (cf. Results and discussion),
we screened the fosmid library using the primers 20F/958R.
Nine clones belonging to these clusters were identified, six of
which were selected for full-length sequencing (1M19, 2C9,
1C18, 34P11, 1C23, and 1N15).

The six fosmid inserts selected for sequencing were puri-
fied (Qiagen Plasmid Mini Kit, Qiagen) and sequenced using
the 454 pyrosequencing FLX technology (Norwegian High-
Throughput Sequencing Centre, University of Oslo, Nor-
way). Post-sequencing, the DNA reads (between 8600 and
12,800 reads per fosmid with approximately 250 bp read
length) were assembled into contigs using the Newbler
Assembler software v 2.3 (454 Life Sciences). Default settings
were used except for setting the minimum read identity to 96%
and the minimum read overlap to 50 nucleotides. The anno-
tation of the contigs was performed using the Pedant Genome
processing pipeline and annotation tool (Rattei et al., 2008;
Walter et al., 2009). The analyses included predictions of: (i)
ORFs, (ii) protein function by sequence similarity searches
against the non-redundant protein sequence database and the
FunCat catalogue, (iii) motif and conserved domains based on
searches against several protein domain databases, and (iv)
tRNA. Small (SSU) and large (LSU) subunit rRNA genes were
manually identified using sequence similarity searches. The
annotation was manually investigated and ORFs were assigned
to COG categories (Cluster of Orthologous Group, www.ncbi.
nlm.nih.gov/COG/) (Tatusov et al., 1997) using a BlastP/
SIMAP E-value threshold of 10�5.
2.6. Phylogenetic analyses
189 thaumarchaeotal SSU rRNA sequences were retrieved
from the Ribosomal Database Project (RDPII, http://rdp.cme.
msu.edu/; Release 10) (Cole et al., 2009). This dataset was
enriched with the 1753 archaeal SSU rRNA sequences longer
than 1200 nucleotides available at the RDPII. Additional
archaeal SSU rRNA sequences of Thaumarchaeota, Kor-
archaeota, ‘Aigarchaeota’ and deeply branching uncultured
archaeal lineages were retrieved from GenBank using BlastN
at the NCBI. The retrieved sequences were aligned together
with the Thaumarchaeota-related SSU rRNA sequences from
our two clone libraries and from fosmids of this study (16 and
9 sequences, respectively) using MAFFT (default parameters)
(Katoh et al., 2002). The resulting alignment was manually
inspected and refined when necessary with ED, the alignment
editor of the MUST package (Philippe, 1993). Regions of
doubtful homology were removed with NET from the MUST
package. A preliminary distance tree was inferred using the
neighbour joining method implemented in PHYLIP
(Felsenstein, 2004). Based on the resulting phylogeny, a subset
of 105 SSU rRNA sequences reflecting the genetic diversity of
Thaumarchaeota and other archaeal lineages was selected.
These sequences were aligned and trimmed as described
above. 1064 nucleic acid positions were conserved for
phylogenetic analyses.

In a second step, a supermatrix was constructed by concat-
enating archaeal SSU and LSU rRNA alignments from com-
plete archaeal genomes and fosmids available in GenBank and
from the draft genome of ‘Ca. Nitrososphaera viennensis’
(Tourna et al., 2011), and from our four Thaumarchaeota-
related fosmids (1M19, 1C23, 1C18 and 34P11) that con-
tained both genes. SSU and LSU rRNA datasets were aligned
and trimmed separately as described above and concatenated
leading to a supermatrix containing 3462 nucleic acid positions.

Finally, using the same approach we constructed four pro-
tein supermatrices (referred to as F1a, F2a, F1ae, and F2ae).
The first supermatrix (F1a, 55 sequences, 653 amino acid
positions) contained five proteins involved in information
processing: L31e, L39e and S19e, RPR2 and EF-1a from 2C9,
1N15 and 34P11 fosmids and from complete archaeal ge-
nomes available at the NCBI. The L31e and L39e are ribo-
somal proteins of the 50S unit, whereas S19e is a part of the
30S unit. The RPR2 protein is a subunit of ribonuclease P, a
protein complex generating mature tRNA from their pre-
cursors, while EF-1a is a subunit of the elongation factor-1
complex involved in protein biosynthesis. The second super-
matrix (F2a, 53 sequences, 1193 amino acid positions)
included the topoisomerase-primase Toprim and the poly-
peptide chain release factor aRF1 in addition to the five pro-
teins mentioned above. This allowed the construction of a
longer alignment but the inclusion of sequences from a single
fosmid only (1N15). Two additional supermatrices F1ae (66
sequences, 618 amino acid positions) and F2ae (64 sequences,
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1139 amino acid positions) were constructed by including
eukaryotic homologues as outgroup to F1a and F2a.

Phylogenetic trees were computed using the maximum
likelihood (ML) and the Bayesian methods implemented in
Treefinder (Jobb et al., 2004) and MrBayes 3.1.2 (Ronquist
and Huelsenbeck, 2003), respectively. According to the
model selection tool implemented in Treefinder (AICc crite-
rion), we used the Global Time Reversible (GTR) (Rodriguez
et al., 1990) and the Le and Gascuel models (Le and Gascuel,
2008) for ML analyses of the nucleic and amino acid datasets,
respectively. In both cases we included a gamma distribution
(G4) (four discrete categories and an estimated alpha param-
eter) to take into account evolutionary rate variations across
sites. Branch robustness of ML phylogenetic trees was esti-
mated by the non-parametric bootstrap procedure imple-
mented in Treefinder (100 replicates). Bayesian analyses were
performed using the GTRþ G4 model (for the two rRNA
datasets) or a mixed model þG4 (for protein supermatrices).
MrBayes was run with four chains for 1 million generations
and trees were sampled every 100 generations. To construct
the consensus tree, the first 1500 trees were discarded as
“burn-in”. Additional Bayesian phylogenetic analyses of the
four protein supermatrices were performed using PhyloBayes
3.3b (Lartillot et al., 2009) with the CATþ G4 model (Lartillot
and Philippe, 2004). Two chains were run for at least 10,000
cycles, saving one tree in ten. The first 300 trees were dis-
carded as “burn-in” and the remaining trees from each chain
were used to test for convergence and compute the 50% ma-
jority rule consensus tree. Posterior probabilities computed by
MrBayes will be referred as PPMB whereas those computed by
PhyloBayes will be referred as PPPB.
2.7. Comparison of stem G þ C content of SSU rRNA
sequences
The locations of stems in SSU rRNA sequences were
retrieved from the RNA secondary STRucture and statistical
ANalysis Database (RNA STRAND v2.0, http://www.rnasoft.
ca/strand/) (Andronescu et al., 2008) for 20 Archaea with a
known optimal growth temperature (OGT). Based on these
data, we identified the homologous regions in the 105 SSU
rRNA sequences used for phylogenetic analyses. When
available, the OGTs of Archaea included in our SSU rRNA
tree were retrieved from the German National Resource Centre
for Biological Material (DSMZ, http://www.dsmz.de/) or from
the literature. A Pearson correlation test between the stem
G þ C content and the OGT was performed. Comparisons
between the OGT means of various archaeal clades were
performed using the Student’s t-test. The hypotheses of
normality and homoscedasticity were verified through the
ShapiroeWilk test of normality and the F-test. All statistical
tests were done using R (version 2.14.1) (Team, 2011).
2.8. Sequence accession numbers
All sequences have been deposited in the EMBL-bank
under accession numbers HE574566e71 for the fosmids
complete sequences; under JF739547e49 for the SSU rRNA
genes of the fosmids 5C14, 5D21 and 6C13; under
JF305824e972 for the 149 SSU rRNA sequences of the
archaeal clone library and under JF317811e918 for the 108
SSU rRNA sequences of the prokaryotic clone library.

3. Results and discussion
3.1. Sampling site and material
Thick finger-long greyish filamentous samples were taken
from the edges of a terrestrial hot spring in the Central thermal
field of Uzon Caldera in Kamchatka. The temperature within
these filaments was 85 �C, while the spring fluid had a tem-
perature of 91 �C and a pH of 5.5. An SSU rRNA gene survey
suggested that the bacterial community was dominated by un-
cultivatedmembers of theAquificales (Table S1), as often found
in (sub)neutral terrestrial hot springs (Hugenholtz et al., 1998;
Reigstad et al., 2010; Reysenbach et al., 2000; Skirnisdottir
et al., 2000; Spear et al., 2005). Archaeal SSU rRNA se-
quences were affiliated with Euryarchaeota, Crenarchaeota, and
MCG (Miscellaneous Crenarchaeotic Group), whereas sixteen
sequences were most similar to Thaumarchaeota (Table S1).
3.2. Analyses of SSU rRNA sequences reveal two novel
(hyper)thermophilic lineages related to Thaumarchaeota
Bayesian and ML phylogenetic analyses of the sixteen SSU
rRNA sequences most similar to Thaumarchaeota (clones
1e15 and clone 35) revealed that they formed two well-
supported monophyletic clusters (PPMB ¼ 1.00 for both
groups, and bootstrap values (BV) ¼ 87% and 76%, Fig. 1).
These two clusters together formed a monophyletic group
(PPMB ¼ 1.00 and BV ¼ 63%) which branched-off before the
divergence of HWCG II and the currently recognized thau-
marchaeotal lineages (PPMB ¼ 1.00 and BV ¼ 71%, and
PPMB ¼ 0.99 and BV ¼ 83%, Fig. 1). At this stage, we would
like to stress that even these two lineages are closely related to
Thaumarchaeota, they cannot be formally affiliated to this
phylum (see below). However, because of their close rela-
tionship with Thaumarchaeota, the two clusters will be sub-
sequently referred to as HTC1 (Hot Thaumarchaeota-related
Clade 1, including clones 1, 2, 3, 5, 12 and 13) and HTC2 (Hot
Thaumarchaeota-related Clade 2, including clones 4, 6, 7, 8, 9,
10, 11, 14, 15 and 35) (Fig. 1). Although these clades con-
tained also sequences from uncultivated archaea belonging the
previously proposed group THSC1 (Terrestrial Hot Spring
Crenarchaeota 1) or THSCG (Terrestrial Hot Spring Cren-
archaeotic group) (Takai and Sako, 1999; Takai et al., 2001),
we think that the names HTC1 and HTC2 are more appro-
priated because they take into account the evolution of the
archaeal taxonomy and underline the evolutionary link be-
tween these archaeal lineages and Thaumarchaeota.

The (hyper)thermophilic nature of HTC1 and HTC2 was
also supported by the G þ C content of their SSU rRNA se-
quences. The stem G þ C content of SSU rRNA is strongly
correlated to the optimal growth temperature (OGT) in
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Fig. 1. Archaeal SSU rRNA phylogeny. Unrooted Bayesian phylogenetic tree of 105 SSU rRNA sequences representative of the archaeal diversity (1064 unam-
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prokaryotes, and is higher in organisms living in hot environ-
ments because G:C pairs are more stable than A:T pairs due to
their additional hydrogen bond (Galtier and Lobry, 1997). This
property has been used to predict OGT in ancestral sequences
(Boussau et al., 2008; Galtier et al., 1999), but it could also be
used to infer the OGT of present-day prokaryotes. Using sec-
ondary structure information from the RNASTRANDDatabase
(Andronescu et al., 2008), we determined the stem G þ C
content of the SSU rRNA sequences used to build the tree
shown in Fig. 1 (Table S2). In agreement with previous studies,
the correlation between the stem G þ C content of SSU rRNA
and the OGT was strong (R ¼ 0.93; R2 ¼ 0.8663, see also
Figure S1A). The average stem G þ C contents of HTC1
(75.8%) andHTC2 (80.2%)were significantly higher than those
of archaeal lineages that live in temperate or moderately hot
environments (i.e. group I.1a, I.1b, psL12/group 1A, andMCG)
( p-values<0.02, see also Figure S1B) and was compatible with
life in hot environments. Interestingly, the stem Gþ C contents
of HTC1 were significantly lower compared to HTC2 ( p-value
<10�8), suggesting that the latter might be adapted to higher
temperatures than the former, even if they were detected in the
same pool (Figure S1B).

Altogether, these results are compatible with the hypothesis
that the ancestor of HTC1, HTC2, HWCG II, and Thaumarch-
aeota lived in hot environments and that adaptation to moderate
habitats occurred secondarily during the diversification of
Thaumarchaeota (Barns et al., 1996; Brochier-Armanet et al.,
2012; Hatzenpichler et al., 2008; Lopez-Garcia et al., 2004;
Table 1

(A) General features of the six fully sequenced HTC fosmids. (B) Taxonomic dist

BlastP hit of HTC ORFs. For each taxonomic group, the number (and the percent

(A)

Fosmids HTC1a

1N15 1C18

Accession number HE574569 HE574566

Size (bp) 36,379 36,885

Total fosmid G þ C content (%)b 46 54

SSU rRNA G þ C content (%) 62.2 63.6

Number of ORFs 42 42

Average ORF length (bp) 789 745

ORFs with assigned function 30 23

Conserved hypothetical proteins 4 4

Hypothetical proteins 4 3

Proteins with no hits in any public database 1 7

RNA (tRNA and rRNA) 3 5

(B)

Thaumarchaeota C. subterraneum

Informational processing genesc 32 (74.4%) 6 (60%)

Amino acids/nucleotides/coenzymes/ionsd 3 (7%) 0 (0%)

Energy metabolismd 1 (2.3%) 3 (30%)

Cell compartment, traffic, communicationd 0 (0%) 0 (0%)

Unknowns 7 (16.3%) 1 (10%)

Sum 43 (100%) 10 (100%)

a Hot Thaumarchaeota-related Clade.
b SSU and LSU rRNA genes were not taken into account for G þ C content es
c COG categories J, K, L, and O.
d COG categories E, F, H, I, P, C, G, M, N, T, U, R, and S.
Nunoura et al., 2011; Preston et al., 1996; Reigstad et al., 2008;
Schleper et al., 1997).
3.3. First genomic insights into HTC
In order to expand our knowledge on HTC1 and HTC2, we
investigated a large-insert metagenomic fosmid library built
from the same DNA preparation. Out of the nine clones that
belonged to HTC1 (34P11, 1C18, 1C23, and 1N15) and HTC2
(1M19, 2C9, 5C14, 5D21, and 6C13) (Fig. 1), six were
selected for full-length sequencing (1M19, 2C9, 1C18, 34P11,
1C23, and 1N15). The general features of the six fosmids are
given in Table 1A.

The two HTC2 fosmids (excluding rRNA coding genes)
showed higher overall G þ C content (61% and 68%,
respectively) than the four HTC1 fosmids (46e54%) (Table
1A). The annotation of the six fosmids revealed compact
gene organization with short intergenic regions (Fig. 2). In
four of the six fosmids (1C18, 34P11, 1C23, and 1M19), the
LSU rRNAwas located downstream to the SSU rRNAwhereas
the 5S rRNA was not present. In the two remaining fosmids
the SSU rRNA gene was located at the 30 extremity of the
genomic fragment, possibly explaining the absence of LSU
rRNA coding genes. In this context it is interesting to mention
that SSU and LSU rRNA (but not 5S rRNA) genes are clus-
tered and present in only one copy in Thaumarchaeota ge-
nomes (Blainey et al., 2011; Hallam et al., 2006; Kim et al.,
2011; Mosier et al., 2012a,b; Spang et al., 2012; Walker
ribution and functional assignment (according to COG categories) of the best

age) of gene families belonging to each functional category is indicated.

HTC2a

34P11 1C23 2C9 1M19

HE574571 HE574567 HE574570 HE574568

39,723 19,222 44,176 17,060

53 50 68 61

63.6 62.0 65.7 63.3

47 21 58 21

687 691 721 450

25 11 38 9

5 2 9 1

5 2 1 7

8 2 3 2

5 4 7 2

Crenarchaeota Euryarchaeota Korarchaeota Bacteria Eucarya

13 (26.5%) 11 (25.6%) 1 (50%) 3 (16.7%) 0 (0%)

8 (16.3%) 8 (18.6%) 1 (50%) 3 (16.7%) 1 (100%)

10 (20.4%) 4 (9.3%) 0 (0%) 5 (27.8%) 0 (0%)

7 (14.3%) 0 (0%) 0 (0%) 4 (22.2%) 0 (0%)

11 (22,4%) 20 (46.5%) 0 (0%) 3 (16.7%) 0 (0%)

49 (100%) 43 (100%) 2 (100%) 18 (100%) 1 (100%)

timations.



Fig. 2. Genomic organisation of the six HTC fosmids 1C23, 1C18, 34P11, 1N15, 2C9, and 1M19. The colour code of the open reading frames (ORF) refers to a

higher-level functional classification of COGs (Makarova et al., 2007; Tatusov et al., 2001): Green: Central information processing (J: Translation, ribosomal

structure and biogenesis. K: Transcription. L: DNA replication, recombination and repair. O: Posttranslational modification, protein turnover, chaperones). Orange:

Amino acids/nucleotides/coenzymes/ions (E: Amino acid transport and metabolism. F: Nucleotide transport and metabolism, H: Coenzyme transport and

metabolism, I: Lipid transport and metabolism, P: Inorganic ion transport and metabolism). Purple: Energy metabolism (C: Energy production and conversion. G:

Carbohydrate transport and metabolism). Red: Cell compartment, traffic and communication (M: Cell wall/membrane/envelope biogenesis, outer membrane. N:

Cell motility. T: Signal transduction mechanisms. U: Intracellular trafficking, secretion, and vesicular transport.) Blue: Unknowns (R: General function prediction

only. S: Function unknown). ORFs labelled with a red rectangle at the bottom have a top BlastP hit to Thaumarchaeota. Hits returned by BlastP searches against nr

were considered as potential homologues of the query ORF only if the associated E-value was lower than 10�5. Homologous ORFs (i.e. showing more than 40%

amino acid identity and an E-value <10�5 when blasted against each other) belonging to different fosmids are connected with a grey shading.
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et al., 2010), whereas they are located in different genomic
regions in ‘Ca. Caldiarchaeum subterraneum’, the only
genomic sequence available for ‘Aigarchaeota’ (Nunoura
et al., 2011). Three out of the four fosmids belonging to
HTC1 (1C18, 34P11 and 1N15) were highly syntenic (Fig. 2),
whereas fosmids 1C23 (HTC1), 2C9 and 1M19 (both HTC2)
showed little gene order conservation (Fig. 2). Consistent with
their close proximity in the SSU rRNA tree, fosmids 34P11
and 1C18 (HTC1) showed an overall nucleotide sequence
identity of up to 98e99% over approximately 28 kb. In
contrast, the syntenic ORFs of 1N15 showed only 42% amino
acid identity on average to their homologues found in 34P11
and 1C18. This was congruent with the fact that 1N15 and
34P11/1C18 represented two distant sublineages within HTC1
(Fig. 2).

The six fully sequenced fosmids together encoded 249
ORFs, representing 173 gene families of which 109 (63%)
could be assigned a putative function and covered 17 func-
tional Cluster of Orthologous Groups (COG) categories (Fig. 2
and Table S3). The total number of gene families showing
highest similarity with proteins from Thaumarchaeota, Cren-
archaeota or Euryarchaeota was in the same range (42, 49, and
43, respectively) (Table 1B), whereas only ten and two ORFs
were most similar to proteins from ‘Ca. C. subterraneum’ and
‘Ca. Korarchaeum cryptophilum’, respectively (Table 1B and
Table S3). While ORFs with highest similarity to eur-
yarchaeotal and crenarchaeotal proteins were evenly distrib-
uted over the diverse COG categories, the majority of proteins
more similar to proteins from Thaumarchaeota belonged to
COG categories involved in informational processing (69.2%,
Table 1B and Table S3). The overrepresentation of informa-
tional processing genes with highest similarities to Thau-
marchaeota is in agreement with the SSU rRNA phylogeny
which suggests that HTC1 and HTC2 share a closer evolu-
tionary link with this phylum compared to other archaeal
phyla.

Interestingly, despite the apparent evolutionary relationship
between HTC1, HTC2 and, Thaumarchaeota, the survey of
genes involved in central energy metabolism highlighted some
differences (Table 2). For instance, a four ORF-comprising
gene cluster is found on the two HTC1 fosmids, 34P11
(ORF15-18) and 1N15 (ORF10-13). It encodes the a, b, d and
g subunits of a 2-oxoacid:ferredoxin oxidoreductase (OFOR)
(Table S3). A gene cluster encoding the a, b, and g subunits is
also found on 1C18. But it is located at the 30 extremity of the
fosmid, possibly explaining the absence the d subunit. OFORs
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are ironesulfur cluster proteins that catalyse the decarboxyl-
ation of different 2-oxoacids including pyruvate and 2-
oxoglutarate, two intermediates of the central carbon meta-
bolism (Kerscher and Oesterhelt, 1982). These enzymes have
been classified into different sub-families according to their
substrate specificity (Fukuda and Wakagi, 2002; Mai and
Adams, 1996; Tersteegen et al., 1997; Uyeda and
Rabinowitz, 1971). Irrespective of their substrates, OFORs
can be further distinguished by the number and the type of
their subunits (e.g. a2, ab, a2b2, abdg) that are encoded by
gene clusters (Kletzin and Adams, 1996; Zhang et al., 1996).
Based on sequence similarity, the OFOR subunits have been
assigned to different arCOG-families (Table 2) (Makarova
et al., 2007). Euryarchaeota, Crenarchaeota, Korarchaeota,
and ‘Ca. C. subterraneum’ usually encode several types of
OFORs, whereas Thaumarchaeota contain a single gene
cluster composed of two genes belonging to arCOGs 01599
and 01606 (Table 2). In contrast, the four OFOR subunits
encoded by the HTC1 fosmids were assigned to arCOGs
01599, 01602, 01605, and 01607. Furthermore, the sequences
of the corresponding a and b subunits are most similar to those
found in anaerobic bacteria and archaea (not shown). This
suggests that the OFORs harboured by HTC1 are significantly
different from those found in Thaumarchaeota from groups
I.1a and I.1b.

Secondly, according toNunoura et al. (2011), Crenarchaeota,
some Euryarchaeota (Halobacteriales and Methanosarcinales)
as well as ‘Ca. C. subterraneum’ encode a fumarate hydratase
(FH) (COG0114/arCOG01749, Table 2), which has been pre-
dicted to catalyse the hydration of fumarate tomalate in the citric
acid cycle of various bacteria and archaea. In contrast, all
available thaumarchaeotal genomes and some Euryarchaeota
(Thermoplasmatales, ARMAN, and Methanobacterium strain
AL-21) encode a homologous enzyme that belongs to a separate
(ar)COG family (COG1027/arCOG01750, Table 2) often
termed aspartate ammonia-lyase (or aspartase) due to its high
sequence similarity to the respective lyase gene of Escherichia
coli of the same COG. The phylogenetic analysis of FH and
aspartate ammonia-lyase revealed two distinct horizontal gene
transfer (HGT) events in Archaea (Figure S2). More precisely,
HTC1 members seem to have acquired their enzyme from
Crenarchaeota whereas an HGT occurred between a eur-
yarchaeotal linage related to Thermoplasmatales or Meth-
anobacterium strain AL-21 and the ancestor of Thaumarchaeota
(represented here by groups I.1a and HWCG III). Indeed, ac-
cording to the phylogeny of Archaea, the grouping of Thau-
marchaeota with Thermoplasmatales and Methanobacterium
sp. AL-21 is quite unexpected and in contradiction with the
phylogeny of species. If this grouping reflects a vertical inher-
itance, the gene would have been present in the ancestor of
Archaea and secondarily lost in all lineages, except the three
mentioned above. Moreover, this does not explain why Meth-
anobacterium sp. AL-21 appears more closely related to
Thaumarchaeota than to Thermoplasmatales (given that Meth-
anobacterium and Thermoplasmatales are both Euryarchaeota).
In contrast, a single HGT between a euryarchaeotal lineage
(related to Methanobacterium or Thermoplasmatales) and the
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ancestor of Thaumarchaeota (e.g. the ancestor of group I.1a and
HWCG III) can easily explain this branching pattern.

Although these findings represent only a glimpse into the
putative energy metabolism of HTCs they suggest that dif-
ferences with the (so far described) Thaumarchaeota might
exist.
3.4. HTC1 and HTC2 represent two sublineages of a new
major and ancient archaeal group
To further explore the position of the HTC1 and HTC2 lin-
eages in the Archaea domain, a supermatrix gathering the SSU
and LSU rRNA sequences from fosmids 1C18, 34P11, 1C23,
and 1M19 and complete archaeal genomes was analysed
(Fig. 3). The ML and Bayesian resulting trees were in agree-
ment with the SSU rRNA tree (Fig. 1). More precisely, the
monophyly of HTC1 was recovered (PPMB ¼ 1.00 and
BV¼ 100%), with fosmids 34P11 and 1C18 beingmore closely
0.1
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related to each other than to fosmid 1C23 (PPMB ¼ 1.00 and
BV¼ 99%) and the sister-ship between HTC1 and HTC2 being
again well supported (PPMB¼ 0.99 and BV¼ 74%). Finally, the
close relationship between HTC and Thaumarchaeota was
recovered with maximal supports. The main difference between
the two trees relied on the robust clustering of Thaumarchaeota
and HTC with ‘Ca. C. subterraneum’ (PPMB ¼ 1.00 and
BV ¼ 99%, Fig. 3), whereas the phylogenetic position of the
latter was unresolved in the SSU rRNA tree (Fig. 1). The
grouping of Thaumarchaeota and ‘Ca. C. subterraneum’ was in
agreement with recent phylogenetic analyses (Brochier-
Armanet et al., 2011; Nunoura et al., 2011).
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sister-ship of HTC1 and HTC2 (PPMB ¼ 1.00, BV ¼ 50% and
PPPB ¼ 0.97), and the grouping of ‘Ca. C. subterraneum’ with
HTC and Thaumarchaeota (PPMB ¼ 1.00, BV ¼ 50% and
PPPB ¼ 1.00), albeit the relationships between these lineages
were not resolved (Fig. 4A). Finally, the addition of two
central information processing proteins present only on fosmid
1N15 (supermatrix F2a) led to a more resolved tree, sup-
porting, among others, the clustering of HTC1 with Thau-
marchaeota with maximal supports and the sister-ship of these
two lineages with ‘Ca. C. subterraneum’/‘Aigarchaeota’
(PPMB ¼ 1.00, BV ¼ 89% and PPPB ¼ 1.00) (Figure S3A).

The grouping of HTC1 and HTC2 with Thaumarchaeota
raises the question of the taxonomic status of these two new
lineages. Indisputably, HTC is genetically diverse and only
distantly related to currently recognized thaumarchaeotal lin-
eages, as exemplified by the divergence observed in SSU
rRNA sequences (Fig. 1), thus representing a new major
archaeal clade of high-taxonomic rank. This new major clade
likely corresponds to an early-branching thaumarchaeotal
lineage (e.g. a class or at least an order), even if we cannot
fully exclude that they represent a lineage distinct from
Thaumarchaeota, thus a new phylum. Given the scarcity of
genomic, ecological and physiological data, the absence of
any cultivated HTC representatives, and the opened question
regarding the status of ‘Aigarchaeota’, a definitive answer
cannot yet be reached regarding the precise taxonomic status
of HTC and of its two sublineages, HTC1 and HTC2.
3.5. Informational proteins from HTC fosmids provide
insights regarding the early diversification of Archaea
Early phylogenetic analyses based on SSU rRNA se-
quences suggested a sister-relationship between Thaumarch-
aeota and Crenarchaeota (DeLong, 1992). In contrast,
phylogenetic analyses of protein data from the first thau-
marchaeotal genome sequence (i.e. Cenarchaeum symbiosum)
supported Thaumarchaeota as the first diverging lineage within
Archaea, i.e. before the split of Euryarchaeota and Cren-
archaeota (Brochier-Armanet et al., 2008). However,
following the additional sequence data from other thau-
marchaeotal representatives, the early emergence of this
phylum was either less strongly supported (Spang et al., 2010;
Walker et al., 2010), or challenged by their grouping with
Korarchaeota and Crenarchaeota (Groussin and Gouy, 2011;
Guy and Ettema, 2011; Nunoura et al., 2011). Resolving the
relationships among archaeal phyla has thus become an
important question in evolutionary biology research. Here we
had the opportunity to investigate the phylogenetic position of
Thaumarchaeota by including data from a deep-branching-
related lineage. Therefore, we added eukaryotic homologues
as outgroup in the F1a and F2a alignments, leading to the F1ae
(five proteins, 618 positions) and F2ae (seven proteins, 1139
positions) supermatrices. The F1ae Bayesian and ML trees
(including fosmids 2C9, 1N15, and 34P11) were less resolved
than those based on F2ae (including only fosmid 1N15)
(Fig. 4B and Figure S3B), as expected given the smallest
number of analysed sites. However, both F1ae and F2ae
Bayesian and ML trees supported the branching of Thau-
marchaeota, HTCs, and ‘Ca. C. subterraneum’ before the
divergence of Crenarchaeota, Euryarchaeota and Korarchaeota
(PPMB ¼ 1.0, BV < 50%, and PPPB ¼ 0.96, Fig. 4B;
PPMB ¼ 1.0, BV ¼ 84% and PPPB ¼ 1.0, Figure S3B). These
results are in agreement with early analyses suggesting that
Thaumarchaeota (and relatives) could indeed represent the
first diverging archaeal phylum. But, according to the small
number of HTC1 and HTC2 proteins that could be used in this
analysis, we cannot fully exclude the risk of biases or tree
reconstruction artefacts. Therefore, these results have to be
confirmed when additional protein sequences from Thau-
marchaeota and related lineages become available.

The basal branching of Thaumarchaeota, HTCs and ‘Ca. C.
subterraneum’ could also be interpreted differently. Indeed, a
number of hypotheses postulate that the first eukaryote derived
from the association (symbiosis, engulfment, or other) be-
tween a bona fide archaeon (i.e. a modern archaeon) and a
bacterium. Recent phylogenomics analyses aiming at revisit-
ing these hypotheses were reported (Cox et al., 2008; Foster
et al., 2009; Guy and Ettema, 2011; Kelly et al., 2011;
Pisani et al., 2007; Rivera and Lake, 2004; Thiergart et al.,
2012; Williams et al., 2012) but failed to reach a consensus
despite of the use of very similar datasets, indicating that
additional data and approaches are required to tackle this issue
(Gribaldo et al., 2010). Under the assumption that Eucarya
derive indeed from Archaea, our results favour the hypothesis
that Thaumarchaeota, HTC, and ‘Aigarchaeota’ could be the
closest present-day archaeal relatives of Eucarya.

4. Conclusions

Our metagenomic analyses of a terrestrial hot spring in
Kamchatka provided the first genomic data from two novel
major (hyper)thermophilic archaeal lineages, HTC1 and
HTC2, related to Thaumarchaeota. Our analyses suggest that
HTC1 and HTC2 represent either an ancient lineage of high-
taxonomic rank within Thaumarchaeota or less likely a
distinct phylum. Additional data will be needed to precisely
characterize the energy metabolism and metabolic capacities
of the respective organisms. Further studies of these two
groups will help to shed light on the major question of the
origin of ammonia oxidation in Archaea, and through their key
position in the archaeal tree, will help to uncover important
aspects of ancient evolution.
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